Breathborne biomarkers and the human volatilome

Breathborne biomarkers carry information on the state of human health, and their role in aiding clinical diagnosis or in therapeutic monitoring has become increasingly important as advances in the field are made. Breathborne Biomarkers and the Human Volatilome, Second Edition, provides a comprehensi...

Full description

Bibliographic Details
Other Authors: Beauchamp, Jonathan (Editor), Davis, Cristina (Editor), Pleil, Joachim (Editor)
Format: Book
Language:English
Published: Amsterdam Elsevier [2020]
Edition:Second edition
Subjects:
Table of Contents:
  • Front Cover
  • Breathborne Biomarkers and the Human Volatilome
  • Breathborne Biomarkers and the Human VolatilomeSecond EditionEdited byJonathan BeauchampCristina DavisJoachim Pleil?
  • Copyright
  • Introducing people to innovations, step by step-the legacy of Anton Amann
  • Contents
  • Contributors
  • Foreword
  • Preface
  • A
  • Concepts and modeling
  • 1
  • Breath biomarkers and the exposome
  • 1.1 Overview
  • 1.2 The human volatilome and breath analysis
  • 1.3 Breathborne biomarkers
  • 1.3.1 Capnography
  • 1.3.2 Exhaled nitric oxide in asthma
  • 1.3.3 Ethanol breath test for law enforcement
  • 1.3.4 Hydrogen breath test for lactase deficiency
  • 1.3.5 Carbon monoxide in neonatal jaundice
  • 1.3.6 Urea breath test for Helicobacter pylori infection
  • 1.3.7 Gastric emptying breath test for gastroparesis
  • 1.3.8 Maximum liver function capacity breath test
  • 1.3.9 Heart transplant rejection breath test
  • 1.4 Targeted versus untargeted breath analysis
  • 1.5 The human exposome
  • 1.5.1 A brief history of human exposome research
  • 1.5.2 Defining the human exposome concept
  • 1.5.3 The exhaled breath exposome
  • 1.6 Data treatment tools
  • 1.6.1 Summary statistics
  • 1.6.2 Data visualization
  • 1.7 Summary
  • Acknowledgments
  • References
  • 2
  • Breath sampling and standardization
  • 2.1 Overview
  • 2.2 Sampling
  • 2.2.1 Exhalation phases
  • 2.2.2 Controlled sampling
  • 2.2.3 Analytical platforms
  • 2.2.4 Sampling for offline analysis
  • Bags
  • Sorbent traps
  • Regular sorbent extraction
  • Microextraction
  • 2.2.5 Sampling for online analysis
  • 2.2.6 Influence of physiological parameters
  • 2.2.7 Extraneous confounders
  • 2.3 Standardization
  • 2.4 Summary
  • References
  • 3
  • Physiological modeling of exhaled compounds
  • 3.1 Overview
  • 3.2 Experimental basis from real-time analyses
  • 3.3 Modeling theory
  • 3.4 Isoprene
  • 3.4.1 Experiments to examine endogenous isoprene
  • 3.4.2 A physiological model for breath isoprene dynamics
  • 3.4.3 Practical implications of isoprene model
  • 3.4.4 Extending the isoprene model with two compartments
  • 3.5 Acetone
  • 3.5.1 Experiments to examine endogenous acetone
  • 3.5.2 A physiological model for breath acetone dynamics
  • 3.5.3 Practical implications of acetone model
  • 3.6 Carbon monoxide
  • 3.7 Methane
  • 3.8 Sevoflurane
  • 3.9 Summary
  • Acknowledgments
  • References
  • 4
  • Exhaled nitric oxide physiology and modeling
  • 4.1 Overview
  • 4.2 Two-compartment model
  • 4.3 Different mathematical methods to calculate nitric oxide parameters
  • 4.3.1 Linear method
  • 4.3.2 Nonlinear model
  • 4.4 Mechanisms altering central and peripheral pulmonary nitric oxide parameters
  • 4.5 Nitric oxide parameters in airway diseases
  • 4.5.1 Asthma
  • 4.5.2 Chronic obstructive pulmonary disease
  • 4.5.3 Parenchymal lung diseases
  • 4.6 Nitric oxide parameters in systemic diseases
  • 4.7 Current clinical use and further research on nitric oxide parameters
  • 4.8 Summary