The cell biology of cyanobacteria /

The cyanobacteria are a fascinating group of bacteria that have adapted to colonize almost every environment on the planet. They are the only prokaryotes capable of oxygenic photosynthesis, responsible for up to 20-30% of Earth's photosynthetic productivity. They can attune their light-harvesti...

Full description

Bibliographic Details
Other Authors: Flores, Enrique (Flores García) (Editor), Herrero, Antonia (Editor)
Format: Book
Language:English
Published: Norfolk, England : Caister Academic Press, [2014]
Edition:1st ed
Subjects:
Table of Contents:
  • Contents; Contributors ; Current books of interest; Preface; 1: A Brief History of Cyanobacterial Research: Past, Present, and Future Prospects; 2: Cell Division in Cyanobacteria; Introduction; Peptidoglycan synthesis and hydrolysis; The cytoskeleton and peptidoglycan synthesis; Identification and analysis of cyanobacterial cell division proteins that are not present in E. coli and B. subtilis; Cyanobacteria-derived components of the chloroplast division machinery; Concluding remarks; 3: The Cell Envelope; The structural properties of the cell envelope
  • Biogenesis of the thylakoid membrane and protein complexesFuture perspectives; 5: Protein Targeting, Transport and Translocation in Cyanobacteria; Subcellular organization of cyanobacterial cells - the sorting problem; How to establish protein heterogeneity in cyanobacteria?; Protein translocation and membrane integration in bacteria and chloroplasts - a brief overview; Protein translocation systems in cyanobacteria: a genetic perspective; Protein translocation systems in cyanobacteria: subcellular localization of translocases and integrases; Targeting signals
  • Interactions with soluble factors and targeting proteinsType I signal peptidases; Proteins involved in membrane formation; Transient and/or permanent membrane connections: thylakoid centre and PratA-defined membranes; Models of protein targeting and translocation in cyanobacteria; Epilogue: a heterogenic protein distribution in cyanobacterial subcompartments?; 6: Chromatic Acclimation: a Many-coloured Mechanism for Maximizing Photosynthetic Light Harvesting Efficiency; Introduction; Studies delineating the variation in the types of CA; Cyanobacterial phycobilisomes
  • Physiology and regulation of CA3Physiology and regulation of CA2; Physiology and regulation of CA4; Conclusions and future studies; 7: The Carboxysome: Function, Structure and Cellular Dynamics; Introduction; Carboxysome function; Structural and catalytic elements of the carboxysome; Cellular organization and dynamics of carboxysomes; Conclusions and future directions; 8: Glycogen, a Dynamic Cellular Sink and Reservoir for Carbon; Introduction; Structures of glycogen and starch-like reserves in cyanobacteria; Enzymology of glycogen metabolism in cyanobacteria
  • Regulation of cyanobacterial glycogen metabolism
  • The outermost layer of the cyanobacterial cell wallThe lipid composition of cyanobacterial membranes; The protein composition of the cyanobacterial cell envelope; Concluding remarks; 4: Proteomics in Revealing the Composition, Acclimation and Biogenesis of Thylakoid Membranes; Introduction; Membrane organization in cyanobacteria; Challenges in proteomic analysis of thylakoids; Proteomic investigations of thylakoid proteins; Proteomics of thylakoid protein complexes; Quantitative proteomics: response of the thylakoid membrane proteome to changes in environmental conditions