Welcome to the universe : the problem book /

"Here is the essential companion to Welcome to the Universe, a New York Times bestseller that was inspired by the enormously popular introductory astronomy course for non science majors that Neil deGrasse Tyson, Michael A. Strauss, and J. Richard Gott taught together at Princeton. This problem...

Full description

Bibliographic Details
Main Authors: Tyson, Neil deGrasse (Author), Gott, J. Richard (Author), Strauss, Michael Abram (Author)
Format: Book
Language:English
Published: Princeton, New Jersey ; Oxford : Princeton University Press, [2017]
Subjects:
LEADER 22623nam a2200841 i 4500
001 ec8f265c-9961-44a7-80a3-3b4624450c8a
005 20240519000000.0
008 170428t20172017nju b 000 0 eng d
010 |a  2017019526 
015 |a GBB7F7240  |2 bnb 
016 7 |a 018493581  |2 Uk 
019 |a 973750330  |a 973757605  |a 973797879  |a 973804368  |a 973899200  |a 973904054 
020 |a 0691177805  |q (hardback ;  |q alk. paper) 
020 |a 0691177805  |q hardcover ;  |q alkaline paper 
020 |a 0691177813  |q (pbk. ;  |q alk. paper) 
020 |a 0691177813  |q paperback ;  |q alkaline paper 
020 |a 9780691177809  |q (hardback ;  |q alk. paper) 
020 |a 9780691177809  |q hardcover ;  |q alkaline paper 
020 |a 9780691177816  |q (pbk. ;  |q alk. paper) 
020 |a 9780691177816  |q paperback ;  |q alkaline paper 
035 |a (MdBJ)6776971 
035 |a (NjP)10356178-princetondb 
035 |a (OCoLC)974676770 
035 |a (OCoLC)ocn974676770 
035 |a (POOF2)21883 
035 |a 6776971 
035 |a ocn974676770 
035 |z (NjP)Voyager10356178 
035 |z (OCoLC)973750330  |z (OCoLC)973757605  |z (OCoLC)973797879  |z (OCoLC)973804368  |z (OCoLC)973899200  |z (OCoLC)973904054 
040 |a OU/DLC  |b eng  |e rda  |c OSU  |d DLC  |d BTCTA  |d BDX  |d OCLCO  |d OCLCF  |d YDX  |d MdBJ  |d NhCcYME 
040 |a OU/DLC  |b eng  |e rda  |c OSU  |d DLC  |d BTCTA  |d BDX  |d OCLCO  |d OCLCF  |d YDX  |d YDX  |d NZAUC  |d CHVBK  |d OCLCO  |d VT2  |d OCLCO  |d NJT  |d S1C  |d MZ5  |d UKMGB  |d QS5  |d FIC  |d OCLCO 
040 |a OU/DLC  |b eng  |e rda  |c OSU  |d DLC  |d BTCTA  |d BDX  |d OCLCO  |d OCLCF  |d YDX 
042 |a pcc 
049 |a JHEE 
050 0 0 |a QB981  |b .T975 2017 
082 0 0 |a 523.1076  |2 23 
100 1 |a Tyson, Neil deGrasse,  |e author 
245 1 0 |a Welcome to the universe :  |b the problem book /  |c Neil deGrasse Tyson, Michael A. Strauss and J. Richard Gott 
263 |a 1709 
264 1 |a Princeton, New Jersey ;  |a Oxford :  |b Princeton University Press,  |c [2017] 
264 4 |c ©2017 
300 |a 235 pages ;  |c 25 cm 
300 |a xxv, 235 pages :  |b illustrations ;  |c 26 cm 
300 |a xxv, 235 pages ;  |c 27 cm 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
504 |a Includes bibliographical references and index 
505 0 |a Math tips -- Stars, planets, and life. The size and scale of the universe -- From the day and night sky to planetary orbits -- Newton's laws -- How stars radiate energy -- The lives and deaths of stars -- Why Pluto is not a planet -- The search for life in the galaxy -- Galaxies. The Milky Way and the universe of galaxies -- The expansion of the universe -- The early universe and quasars -- Einstein and the universe. Einstein's road to special relativity -- Einstein's general theory of relativity -- Black holes -- Cosmic strings, wormholes, and time travel -- The shape of the universe and the Big Bang -- Inflation and recent developments in cosmology -- Our future in the universe -- Useful numbers and equations -- Solutions 
505 0 0 |a Contents note continued:  |g 81  |t Hubble Constant --  |t Measuring the expansion rate of the universe from the measured properties of galaxies. --  |g 82.  |t Which expands faster: The universe or the Atlantic Ocean? --  |t answer may surprise you. --  |g 83.  |t third dimension in astronomy --  |t essay about how we measure distances in the universe. --  |g 84.  |t Will the universe expand forever? --  |t relationship between the density of the universe and its future fate. A challenge problem. --  |g 85.  |t motion of the Local Group through space --  |t Calculating the gravitational pull from the Virgo galaxy supercluster on our Local Group of galaxies. A challenge problem. --  |g 15-16.  |t Early Universe And Quasars --  |g 86.  |t Neutrinos in the early universe --  |t Calculating just how numerous the neutrinos produced soon after the Big Bang are. --  |g 87.  |t No center to the universe --  |t brief essay explaining why the expanding universe has no center. --  |g 88.  |t Luminous quasars --  |t Calculating the properties of quasars, and the supermassive black holes that power them. --  |g 89.  |t origin of the elements --  |t essay describing how different elements are formed in the universe. --  |g 17-18.  |t Einstein's Road To Special Relativity --  |g 90.  |t Lorentz factor --  |t Exploring the special relativistic relation between lengths as seen in different reference frames. --  |g 91.  |t Speedy muons --  |t How special relativity is important in understanding the formation and detection of muons created in the upper atmosphere. --  |g 92.  |t Energetic cosmic rays --  |t Determining relativistic effects for one of the highest-energy particles ever seen. --  |g 93.  |t Titanic is moving --  |t Playing relativistic games with the great ship Titanic. --  |g 94.  |t Aging astronaut --  |t Understanding how the relativistic effects of moving an astronaut at close to the speed of light. --  |g 95.  |t Reunions --  |t How two friends can differ on the passage of time. --  |g 96.  |t Traveling to another star --  |t Calculating how time ticks slower for an astronaut traveling at close to the speed of light. --  |g 97.  |t Clocks on Earth are slow --  |t Calculating the difference between a clock in orbit around the Sun and one standing still. --  |g 98.  |t Antimatter! --  |t Should you run if trucks made of matter and antimatter collide with one another? --  |g 99.  |t Energy in a glass of water --  |t Calculating how much energy could be extracted from the fusion of the hydrogen in a glass of water. --  |g 100.  |t Motion through spacetime --  |t Drawing the path of the Earth's orbit around the Sun in spacetime. --  |g 101.  |t Can you go faster than the speed of light? --  |t Why the postulates of special relativity do not allow travel faster than the speed of light. --  |g 102.  |t Short questions in special relativity --  |t Quick questions which can be answered in a few sentences. --  |g 19.  |t Einstein's General Theory Of Relativity --  |g 103.  |t Tin Can Land --  |t Exploring the nature of geodesics on a familiar two-dimensional surface. --  |g 104.  |t Negative mass --  |t Would a dropped ball of negative mass fall down? --  |g 105.  |t Aging in orbit --  |t Exploring special and general relativistic effects on your clock while in orbit. A challenge problem. --  |g 106.  |t Short questions in general relativity --  |t Quick questions that can be answered in a few sentences. --  |g 20.  |t Black Holes --  |g 107.  |t black hole at the center of the Milky Way --  |t Calculating the properties of the supermassive black hole at the center of our Galaxy. --  |g 108.  |t Quick questions about black holes --  |t Short questions that can be answered in a few sentences. --  |g 109.  |t Big black holes --  |t Exploring the properties of the biggest black holes in the universe. --  |g 110.  |t Hitchhiker's challenge --  |t Hitchhiker's Guide to the Galaxy inspires a problem on black holes. A challenge problem. --  |g 111.  |t Colliding black holes! --  |t Measurements of gravitational waves from a pair of merging black holes allows us to determine their properties. --  |g 112.  |t Extracting energy from a pair of black holes --  |t Using ideas from Stephen Hawking to determine how much energy can be released when black holes collide. --  |g 21.  |t Cosmic Strings, Wormholes, And Time Travel --  |g 113.  |t Quick Questions About Time Travel --  |t Short questions that can be answered in a few sentences. --  |g 114.  |t Time travel tennis --  |t Playing a tennis game with yourself with the help of time travel. A challenge problem. --  |g 115.  |t Science fiction --  |t Writing a science fiction story that uses concepts from astrophysics: the challenge is to make it as scientifically realistic as possible. --  |g 22.  |t Shape Of The Universe And The Big Bang --  |g 116.  |t Mapping the universe --  |t Ranking the distance of various astronomical objects from the Earth. --  |g 117.  |t Gnomonic projections --  |t Exploring the geometry of an unusual mapping of the night sky onto a flat piece of paper. --  |g 118.  |t Doctor Who in Flatland --  |t Using concepts from general relativity to understand the nature of Dr. Who's Tardis. --  |g 119.  |t Quick questions about the shape of the universe --  |t Short questions that can be answered in a few sentences. --  |g 23.  |t Inflation And Recent Developments In Cosmology --  |g 120.  |t earliest possible time --  |t Calculating it using both general relativity and quantum mechanics. --  |g 121.  |t worst approximation in all of physics --  |t Can the Planck density give us a reasonable estimate for the density of dark energy? Hint: no. --  |g 122.  |t Not a blunder after all? --  |t Describing the relationship between Einstein's desire for a static universe and the accelerated expansion we now observe. --  |g 123.  |t Big Bang --  |t essay describing the empirical evidence that the universe started in a Big Bang. --  |g 24.  |t Our Future In The Universe --  |g 124.  |t Getting to Mars --  |t Calculating the most efficient orbit to get from Earth to Mars. --  |g 125.  |t Interstellar travel: Solar sails --  |t Using the pressure of light from the Sun to propel a spacecraft for interstellar travel. --  |g 126.  |t Copernican arguments --  |t Applied to time. --  |g 127.  |t Copernicus in action --  |t essay about Copernican arguments in our understanding of the structure of the universe and our place in it. --  |g 128.  |t Quick questions for our future in the universe --  |t Short questions that can be answered in a few sentences. --  |g 129.  |t Directed panspermia --  |t Exploring how humankind could colonize the Milky Way with robotic probes. 
505 0 0 |a note:  |g 1  |t Size And Scale Of The Universe --  |g 1.  |t Scientific notation review --  |t Writing numbers in scientific notation. --  |g 2.  |t How long is a year? --  |t Calculating the number of seconds in a year. --  |g 3.  |t How fast does light travel? --  |t Calculating the number of kilometers in a light-year. --  |g 4.  |t Arcseconds in a radian --  |t Calculating the number of arcseconds in a radian, a number used whenever applying the small-angle formula. --  |g 5.  |t How far is a parsec? --  |t Converting from parsecs to light-years and astronomical units. --  |g 6.  |t Looking out in space and back in time --  |t Exploring the relationship between distance and time when traveling at the speed of light. --  |g 7.  |t Looking at Neptune --  |t time for light to travel from Earth to the planet Neptune depends on where it and we are in our respective orbits. --  |g 8.  |t Far, far away; long, long ago --  |t There is an intrinsic time delay in communicating with spacecraft elsewhere in the solar system or elsewhere in the Milky Way galaxy. --  |g 9.  |t Interstellar travel --  |t Calculating how long it takes to travel various distances at various speeds. --  |g 10.  |t Traveling to the stars --  |t Calculating how long it would take to travel to the nearest stars. --  |g 11.  |t Earth's atmosphere --  |t Calculating the mass of the air in Earth's atmosphere, and comparing it with the mass of the oceans. --  |g 2.  |t From The Day And Night Sky To Planetary Orbits --  |g 12.  |t Movements of the Sun, Moon, and stars --  |t Exploring when and where one can see various celestial bodies. --  |g 13.  |t Looking at the Moon --  |t There is a lot you can infer by just looking at the Moon! --  |g 14.  |t Rising and setting --  |t Questions about when various celestial bodies rise and set. --  |g 15.  |t Objects in the sky --  |t More questions about what you can learn by looking at objects in the sky. --  |g 16.  |t Aristarchus and the Moon --  |t Determining the relative distance to the Moon and the Sun using high-school geometry. --  |g 17.  |t distance to Mars --  |t Using parallax to determine how far away Mars is. --  |g 18.  |t distance to the Moon --  |t Using parallax to determine how far away the Moon is. --  |g 19.  |t Masses and densities in the solar system --  |t Calculating the density of the Sun and of the solar system. --  |g 3.  |t Newton's Laws --  |g 20.  |t Forces on a book --  |t Using Newton's laws to understand the forces on a book resting on a table. --  |g 21.  |t Going ballistic --  |t Calculating the speed of a satellite in low Earth orbit. --  |g 22.  |t Escaping Earth's gravity? --  |t Calculating the distance at which the gravitational force from Earth and the Moon are equal. --  |g 23.  |t Geosynchronous orbits --  |t Calculating the radius of the orbit around Earth that is synchronized with Earth's rotation. --  |g 24.  |t Centripetal acceleration and kinetic energy in Earth orbit --  |t Calculating the damage done by a collision with space debris. --  |g 25.  |t Centripetal acceleration of the Moon and the law of universal gravitation --  |t Comparing the acceleration of the Moon in its orbit to that of a dropped apple at Earth's surface. --  |g 26.  |t Kepler at Jupiter --  |t Applying Kepler's laws to the orbits of Jupiter's moons. --  |g 27.  |t Neptune and Pluto --  |t Calculating the relationship of the orbits of Neptune and Pluto. --  |g 28.  |t Is there an asteroid with our name on it? --  |t How to deflect an asteroid that is on a collision course with Earth. --  |g 29.  |t Halley's comet and the limits of Kepler's third law --  |t Applying Kepler's third law to the orbit of Halley's comet. --  |g 30.  |t You cannot touch without being touched --  |t motion of the Sun due to the gravitational pull of Jupiter. --  |g 31.  |t Aristotle and Copernicus --  |t essay about ancient and modern views of the heavens. --  |g 4-6.  |t How Stars Radiate Energy --  |g 32.  |t Distant supernovae --  |t Using the inverse square law relating brightness and luminosity. --  |g 33.  |t Spacecraft solar power --  |t Calculating how much power solar panels on a spacecraft can generate. --  |g 34.  |t You glow! --  |t Calculating how much blackbody radiation our bodies give off. --  |g 35.  |t Tiny angles --  |t Understanding the relationship between motions in space and in the plane of the sky. --  |g 36.  |t Thinking about parallax --  |t How nearby stars appear to move in the sky relative to more distant stars, due to the Earth's motion around the Sun. --  |g 37.  |t Really small angles and distant stars --  |t Gaia spacecraft's ability to measure parallax of distant stars. --  |g 38.  |t Brightness, distance, and luminosity --  |t Exploring the relationship between brightness and luminosity of various stars. --  |g 39.  |t Comparing stars --  |t Relating the luminosity, radius, surface temperature, and distance of stars. --  |g 40.  |t Hot and radiant --  |t Exploring the relation between the properties of stars radiating as blackbodies. --  |g 41.  |t white dwarf star --  |t Calculating the distance and size of a white dwarf star. --  |g 42.  |t Orbiting a white dwarf --  |t Using Kepler's third law to determine the orbit around a white dwarf star. --  |g 43.  |t Hydrogen absorbs --  |t Using the spectrum of an F star to understand the energy levels of a hydrogen atom. A challenge problem. --  |g 7-8.  |t Lives And Deaths Of Stars --  |g 44.  |t shining Sun --  |t Calculating the rate at which hydrogen fuses to helium in the core of the Sun. --  |g 45.  |t Thermonuclear fusion and the Heisenberg uncertainty principle --  |t Using quantum mechanics to determine the conditions under which thermonuclear fusion can take place in the core of a star. A challenge problem. --  |g 46.  |t Properties of white dwarfs --  |t Using direct observations of a white dwarf to determine its radius and density. A challenge problem. --  |g 47.  |t Squeezing into a white dwarf --  |t Determining how far apart the nuclei in a white dwarf star are. --  |g 48.  |t Flashing in the night --  |t Determining whether the gravity of a pulsar is adequate to hold it together as it spins. --  |g 49.  |t Life on a neutron star --  |t Calculating the effects of the extreme gravity of a neutron star. --  |g 50.  |t Distance to a supernova --  |t Watching a supernova remnant expand, and using this to determine how far away it is. --  |g 51.  |t Supernovae are energetic! --  |t Putting the luminosity of a supernova in context. --  |g 52.  |t Supernovae are dangerous! --  |t What would happen if a supernova were to explode within a few hundred light-years of Earth? --  |g 53.  |t Neutrinos coursing through us --  |t Calculating the flux and detectability of neutrinos emitted during a supernova explosion. --  |g 54.  |t really big explosion --  |t Calculating the energy associated with a gamma-ray burst. --  |g 55.  |t Kaboom! --  |t Calculating the properties of one of the most powerful gamma-ray bursts ever seen. --  |g 56.  |t Compact star --  |t Calculating the distance between nuclei in a neutron star. --  |g 57.  |t Orbiting a neutron star --  |t Applying Kepler's third law for an orbit around a neutron star. --  |g 58.  |t Hertzsprung-Russell diagram --  |t essay about the relationship between surface temperature and luminosity of stars. --  |g 9.  |t Why Pluto Is Not A Planet --  |g 59.  |t rival to Pluto? --  |t Calculating the properties of a large Kuiper Belt Object in the outer solar system, working directly from observations. A challenge problem. --  |g 60.  |t Another Pluto rival --  |t Exploring the properties of another large body in the outer solar system. --  |g 61.  |t Effects of a planet on its parent star --  |t Using observations of the motion of a star under the gravitational influence of an orbiting planet to infer the properties of that planet. --  |g 62.  |t Catastrophic asteroid impacts --  |t How the impact of an asteroid on the early Earth may have evaporated the oceans. --  |g 63.  |t Tearing up planets --  |t Calculating the tidal force of a planet on an orbiting moon. A challenge problem. --  |g 10.  |t Search For Life In The Galaxy --  |g 64.  |t Planetary orbits and temperatures --  |t Calculating the orbits and equilibrium temperatures of planets orbiting other stars. --  |g 65.  |t Water on other planets? --  |t Determining whether liquid water can exist on the surface of planets orbiting other stars. --  |g 66.  |t Oceans in the solar system --  |t Exploring the properties of oceans on Earth, Mars and Europa. --  |g 67.  |t Could photosynthetic life survive in Europa's ocean? --  |t Determining how much life the sunlight that impinges on Europa could support. --  |g 68.  |t essay on liquid water --  |t essay describing the conditions under which liquid water, necessary for life as we know it, exists. --  |g 11-13.  |t Milky Way And The Universe Of Galaxies --  |g 69.  |t How many stars are there? --  |t Calculating the number of stars in the observable universe. --  |g 70.  |t distance between stars --  |t Putting the distance between stars into perspective.  
505 0 0 |t --  |g 71  |t emptiness of space --  |t Calculating the density of the Milky Way and of the universe as a whole. --  |g 72.  |t Squeezing the Milky Way --  |t What would happen if you brought all the stars in the Milky Way into one big ball? --  |g 73.  |t star is born --  |t How much interstellar gas do you need to bring together to make a star? --  |g 74.  |t massive black hole in the center of the Milky Way --  |t Calculating the mass of the black hole at the center of our Galaxy, working directly from observations. --  |g 75.  |t Supernovae and the Galaxy --  |t How many supernovae are needed to create the heavy elements in the Milky Way? --  |g 76.  |t Dark matter halos --  |t Calculating the mass of the Milky Way from its observed rotation. --  |g 77.  |t Orbiting Galaxy --  |t orbit of the Large Magellanic Cloud around the Milky Way, and what it says about the mass of our Galaxy. --  |g 78.  |t Detecting dark matter --  |t Calculating how many dark matter particles there are all around us, and how we plan to detect them. A challenge problem. --  |g 79.  |t Rotating galaxies --  |t Determining whether we can see the rotation of a galaxy on the sky. --  |g 80.  |t Measuring the distance to a rotating galaxy --  |t Using the apparent motion of stars in a galaxy in the plane of the sky and along the line of sight to determine its distance. --  |g 14.  |t Expansion Of The Universe -- 
520 |a "Here is the essential companion to Welcome to the Universe, a New York Times bestseller that was inspired by the enormously popular introductory astronomy course for non science majors that Neil deGrasse Tyson, Michael A. Strauss, and J. Richard Gott taught together at Princeton. This problem book features more than one hundred problems and exercises used in the original course-ideal for anyone who wants to deepen their understanding of the original material and to learn to think like an astrophysicist.Whether you're a student or teacher, citizen scientist or science enthusiast, your guided tour of the cosmos just got even more hands-on with Welcome to the Universe: The Problem Book.The essential companion book to the acclaimed bestseller features the problems used in the original introductory astronomy course for non science majors at Princeton University organized according to the structure of Welcome to the Universe, empowering readers to explore real astrophysical problems that are conceptually introduced in each chapter. Problems are designed to stimulate physical insight into the frontier of astrophysics. Problems develop quantitative skills, yet use math no more advanced than high school algebra. Problems are often multipart, building critical thinking and quantitative skills and developing readers' insight into what astrophysicists do. Ideal for course use-either in tandem with Welcome to the Universe or as a supplement to courses using standard astronomy textbooks or self-study. Tested in the classroom over numerous semesters for decades. Prefaced with a review of relevant concepts and equations. Full solutions and explanations are provided, allowing students and other readers to check their own understanding"-- Publisher description 
650 0 |a Cosmology  |v Problems, exercises, etc 
650 0 |a Relativity (Physics)  |v Problems, exercises, etc 
650 0 |a Stars  |v Problems, exercises, etc 
650 4 |a Cosmology  |v Problems, exercises, etc 
650 4 |a Relativity (Physics)  |v Problems, exercises, etc 
650 4 |a Stars  |v Problems, exercises, etc 
650 7 |a Cosmology  |2 fast 
650 7 |a Relativity (Physics)  |2 fast 
650 7 |a Stars  |2 fast 
655 7 |a Problems and Exercises  |2 fast 
655 7 |a Problems and exercises  |2 fast 
655 7 |a Problems and exercises  |2 lcgft 
700 1 |a Gott, J. Richard,  |e author 
700 1 |a Strauss, Michael Abram,  |e author 
999 1 0 |i ec8f265c-9961-44a7-80a3-3b4624450c8a  |l 991001524569707861  |s US-MDBJ  |m welcome_to_the_universeproblem_book________________________________________2017_______princa________________________________________tyson__neil_degrasse_______________p 
999 1 0 |i ec8f265c-9961-44a7-80a3-3b4624450c8a  |l 10759266  |s US-NIC  |m welcome_to_the_universeproblem_book________________________________________2017_______princa________________________________________tyson__neil_degrasse_______________p 
999 1 0 |i ec8f265c-9961-44a7-80a3-3b4624450c8a  |l 99103561783506421  |s US-NJP  |m welcome_to_the_universeproblem_book________________________________________2017_______princa________________________________________tyson__neil_degrasse_______________p 
999 1 1 |l 991001524569707861  |s ISIL:US-MDBJ  |t BKS  |a LSC shmoffs  |b 31151033848973  |c QB981 .T975 2017  |d 0  |x jhbooks  |y 23458780890007861  |p LOANABLE 
999 1 1 |l 10759266  |s ISIL:US-NIC  |t BKS  |a math  |b 31924126477094  |c QB981 .T975 2017  |d lc  |k 1  |x Book  |y 2e0d1713-477c-441e-a0b2-7f5b19f92b5f  |p LOANABLE 
999 1 1 |l 99103561783506421  |s ISIL:US-NJP  |t BKS  |a lewis stacks  |b 32101101464657  |c QB981 .T975 2017  |d 0  |x Gen  |y 23523772020006421  |p UNLOANABLE