Nanomaterials : Biomedical, Environmental, and Engineering Applications

Bibliographic Details
Main Author: Kanchi, Suvardhan
Other Authors: Ahmed, Shakeel, Hussain, Chaudhery Mustansar, Sabela, Myalowenkosi I
Format: Book
Language:English
Published: Newark : John Wiley & Sons, Incorporated, 2018
Edition:1st ed
Series:Advanced Material Series
Subjects:
LEADER 10187nam a22004213i 4500
001 effc42a8-2726-4e4c-8253-4c1d35c31174
005 20231008000000.0
008 230927s2018 xx o ||||0 eng d
020 |a 9781119370376  |q (electronic bk.) 
020 |z 9781119370260 
035 |a (Au-PeEL)EBL5405940 
035 |a (EXLCZ)9917683742300041 
035 |a (MiAaPQ)EBC5405940 
035 |a (OCoLC)1038023296 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
100 1 |a Kanchi, Suvardhan 
245 1 0 |a Nanomaterials :  |b Biomedical, Environmental, and Engineering Applications 
250 |a 1st ed 
264 1 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2018 
264 4 |c ©2018 
300 |a 1 online resource (325 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advanced Material Series 
505 0 |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Synthesis and Characterization -- 1 Synthesis, Characterization and General Properties of Carbon Nanotubes -- 1.1 Introduction -- 1.2 The History of Carbon Nanotubes -- 1.3 Graphene -- 1.4 Graphite -- 1.5 Fullerene -- 1.6 Rehybridization -- 1.7 Structure of Carbon Nanotubes (CNTs) -- 1.8 Classification of CNTs -- 1.8.1 Classification by Chirality -- 1.8.2 Classification by Conductivity -- 1.8.3 Classification by Layers -- 1.9 Crystal Structures of Carbon Nanotubes -- 1.10 Synthesis Methods -- 1.10.1 Arc-Discharge -- 1.10.2 Laser Ablation -- 1.10.3 Flame Methods -- 1.10.4 Chemical Vapor Deposition -- 1.11 The Purification Process of CNTs -- 1.12 Mechanism of Growth CNTs -- 1.12.1 The Model for Carbon Filament Growth -- 1.12.1.1 Tip Growth Model -- 1.12.1.2 Base Growth Model -- 1.12.2 Free Radical Condensate -- 1.12.3 Yarmulke Mechanism -- 1.13 Properties of Carbon Nanotubes -- 1.13.1 Electronic Properties of Carbon Nanotubes -- 1.13.2 Mechanical Properties of CNTs -- 1.14 Applications of Carbon Nanotubes -- 1.14.1 Fuel Cells -- 1.14.2 Solar Cells -- 1.14.3 Dye-sensitized Solar Cells -- 1.15 Characterization of CNTs -- 1.15.1 Raman Spectroscopy -- 1.15.1.1 G band -- 1.15.1.2 D Band -- 1.15.1.3 Radial Breathing Mode -- 1.15.2 X-Ray Diffraction -- 1.15.3 X-ray Photoelectron Spectroscopy -- 1.15.4 Thermo Gravimetric Analysis -- 1.15.5 Transmission Electron Microscopy -- 1.15.6 Scanning Electronic Microscopy -- 1.15.7 Scanning Helium Ion Microscopy -- 1.16 Composite of CNTs/Semiconductors -- 1.17 Recent Updates on Synthesis of CNTs -- References -- 2 Synthesis and Characterization of Phosphorene: A Novel 2D Material -- 2.1 Introduction -- 2.1.1 History of Phosphorene -- 2.1.2 Crystal Structure -- 2.1.3 Band Structure -- 2.2 Synthesis of Phosphorene -- 2.2.1 Mechanical Exfoliation 
505 8 |a 11.3 Optical Properties -- 11.4 Improving Performance -- 11.4.1 Use of a New Kind of Structures -- 11.4.2 Use of New Spectroscopy Techniques -- 11.5 Surface Patterning -- 11.6 Applications - Next-Generation DNA Sequencing and Beyond -- 11.7 Some Other Sensing Examples -- 11.8 Future Perspectives -- References -- 12 Catalytically Active Enzyme Mimetic Nanomaterials and Their Role in Biosensing -- 12.1 Introduction -- 12.2 Different Types of Catalytically Active Enzyme Mimetic Nanomaterials -- 12.2.1 Carbon Derivative-based Enzyme Mimetic Nanomaterials -- 12.2.1.1 Carbon Nanotubes -- 12.2.1.2 Graphene Oxide -- 12.2.1.3 Graphene Quantum Dots -- 12.2.1.4 Graphene-Hemin Nanocomposites -- 12.2.2 Nobel Metal Nanoparticle-Based Enzyme Mimetic Nanomaterials -- 12.2.2.1 Gold Nanoparticles -- 12.2.3 Metal Oxide Nanoparticle-Based Enzyme Mimetic Nanomaterials -- 12.3 Applications of Catalytically Active Nanomaterials in Biosensing -- 12.3.1 Biosensors -- 12.3.1.1 H2O2 Detection -- 12.3.1.2 Glucose Detection Peroxidase-Like Nanozymes Coupled -- 12.3.1.3 Immunoassays -- References -- Index -- EULA 
505 8 |a 2.2.2 Plasma-Assisted Method -- 2.2.3 Liquid-Phase Exfoliation -- 2.2.4 Chemical Vapor Deposition -- 2.3 Characterization of Phosphorene -- 2.3.1 Structural Charcterizations -- 2.3.2 Spectroscopic Characterizations -- 2.3.3 Optical Band Gap Characterization -- 2.4 Environment Stability Issue of Phosphorene -- 2.5 Summary and Future Prospective -- References -- 3 Graphene for Advanced Organic Photovoltaics -- 3.1 Introduction -- 3.2 History of Graphene -- 3.3 Structure of Graphene -- 3.4 Graphene Family Nanomaterials -- 3.5 Properties of Graphene -- 3.5.1 Physicochemical Properties -- 3.5.2 Thermal and Electrical Properties -- 3.5.3 Optical Properties -- 3.5.4 Mechanical Properties -- 3.5.5 Biological Properties -- 3.6 Graphene for Advanced Organic Photovoltaics -- 3.6.1 Transparent Electrodes of OPVs -- 3.6.2 Acceptor Material in OPVs -- 3.6.3 Interfacial Layer in OPVs -- 3.7 Conclusion -- References -- 4 Synthesis of Carbon Nanotubes by Chemical Vapor Deposition -- 4.1 Introduction -- 4.2 Synthesis Methods -- 4.2.1 Arc-Discharge -- 4.2.2 Laser Ablation -- 4.2.3 Flame Methods -- 4.2.4 Chemical Vapor Deposition -- 4.3 The Parameters of CVD -- 4.3.1 CNT Precursors -- 4.3.2 Type of Catalyst -- 4.3.3 Effect of Temperature -- 4.3.4 Gas Flow Rates -- 4.4 Deformations and Defects in Carbon Nanotubes -- 4.4.1 Deformations in Carbon Nanotubes -- 4.4.2 Defects in Carbon Nanotubes -- 4.5 Characterization of CNTs -- 4.6 Conclusion -- References -- Part II: Environmental and Engineering Applications -- 5 A Review of Pharmaceutical Wastewater Treatment with Nanostructured Titanium Dioxide -- 5.1 Introduction -- 5.2 Heterogeneous Photocatalysis -- 5.3 Pharmaceuticals in the Environment -- 5.4 Role of TiO2 in Photocatalysis for Degradation, Mineralization, and Transformation Process of Pharmaceuticals -- 5.5 Applications -- 5.6 Conclusion -- Acknowledgment 
505 8 |a 9.2.1 Biophotolysis -- 9.2.2 Photo-Fermentation -- 9.2.3 Dark Fermentation -- 9.2.4 Microbial Electrolysis Cell -- 9.3 Nanaparticle Effects on Biohydrogen Production -- 9.3.1 Dark Fermentative Hydrogen Production -- 9.3.2 Photo Fermentative Hydrogen Production -- 9.3.3 Photocatalytic Hydrogen (H2) Production -- 9.3.4 MEC-Based Hydrogen Production -- 9.4 Biohydrogen Producing Associated with Immobilized Enzymes (Cellulases and Hydrogenases) -- 9.5 Outlook and Concluding Notes -- Acknowledgment -- References -- 10 A Framework for Using Nanotechnology in Military Gear -- 10.1 Introduction -- 10.2 Literature Review -- 10.2.1 Antibacterial and Self-cleaning Properties -- 10.2.2 Ballistic Protection Properties -- 10.2.3 Biological and Chemical Protection Properties -- 10.2.4 Health Monitoring Sensing Properties -- 10.2.5 UV Protection Properties -- 10.2.6 Ethics, Safety, and the Enhancement of Soldier's Performance -- 10.2.7 Risks in Engineered Nanomaterials -- 10.2.8 Control of Risks -- 10.3 Application of Nanotechnology in the Military -- 10.3.1 Protective Properties -- 10.3.1.1 Environmental Hazard Protection -- 10.3.1.2 Biological and Chemical Hazard Protection -- 10.3.1.3 Injury Protection -- 10.3.2 Medical Properties -- 10.3.2.1 Bio-sensing -- 10.3.2.2 Tissue Repair -- 10.3.3 Ethics, Safety, and the Enhancement of Soldier's Performance -- 10.3.4 Key Transmissions of ENM Exposure -- 10.4 Conclusions -- 10.4.1 Recommendations -- References -- Part III: Biological Applications -- 11 Plasmonic Nanopores: A New Approach Toward Single Molecule Detection -- 11.1 Introduction -- 11.1.1 Biological Nanopores -- 11.1.2 Solid State Nanopores -- 11.1.3 Plasmoinc Nanopore -- 11.2 Sensing Principles of Plasmonic Nanopore -- 11.2.1 Fabrication of Plasmonic Nanopores -- 11.2.1.1 Materials of Choice -- 11.2.1.2 Lithography -- 11.2.1.3 Multilayers 
505 8 |a References -- 6 Nanosilica Particles in Food: A Case of Synthetic Amorphous Silica -- 6.1 Introduction -- 6.1.1 The Different Forms of Silica -- 6.1.2 Synthetic Amorphous Silica -- 6.1.3 Physical and Chemical Properties of SAS -- 6.1.4 Silica Applications in the Food Industry -- 6.1.5 Toxicity -- 6.1.6 Conclusion -- References -- 7 Bio-Sensing Performance of Magnetite Nanocomposite for Biomedical Applications -- 7.1 Introduction -- 7.1.1 Hematite -- 7.1.2 Maghemite -- 7.1.3 Magnetite -- 7.1.4 Magnetism and Magnetic Materials -- 7.1.5 Types of Magnetic Substances -- 7.1.5.1 Paramagnetic Substances -- 7.1.5.2 Diamagnetic Substances -- 7.1.5.3 Ferri Magnetic Substances -- 7.1.5.4 Ferro Magnetic Substances -- 7.1.5.5 Anti-Ferro Magnetic Substances -- 7.1.6 Shape, Size, and Magnetic Properties -- 7.1.7 Synthesis Methods of Magnetic Nanoparticles -- 7.1.8 Advantages of Magnetic Nanomaterials -- 7.1.9 Surface Modifications of Magnetic Nanoparticles -- 7.2 Potential Applications of Magnetic Nanoparticles -- 7.2.1 Magnetic Separation -- 7.2.2 Magnetic Resonance Image -- 7.2.3 Targeted Drug Delivery Systems -- 7.2.4 Magnetic Hyperthermia -- 7.2.5 Gene Delivery -- 7.3 Conclusion -- References -- 8 The Importance of Screening Information Data Set in Nanotechnology -- 8.1 Introduction -- 8.2 Review of the Literature -- 8.2.1 Carbon Nanotubes -- 8.2.2 Nanosilver -- 8.2.3 Carbon Nanotubes vs. Asbestos -- 8.2.4 Density -- 8.2.5 Risk Assessment -- 8.2.6 Using SIDS as a Risk Assessment Tool for ENPs -- 8.3 Behavioral Patterns of Engineered Nanoparticles -- 8.3.1 Products Containing Nanosilver -- 8.3.2 Toxicity Effects of Nanosilver on Humans -- 8.3.3 Toxicity Effects on the Environment -- 8.4 Conclusions and Recommendations -- References -- 9 Nanomaterials for Biohydrogen Production -- 9.1 Introduction -- 9.2 Major Biohydrogen Production Pathways 
588 |a Description based on publisher supplied metadata and other sources 
650 0 |a Nanostructured materials 
700 1 |a Ahmed, Shakeel 
700 1 |a Hussain, Chaudhery Mustansar 
700 1 |a Sabela, Myalowenkosi I 
776 0 8 |i Print version:  |a Kanchi, Suvardhan  |t Nanomaterials  |d Newark : John Wiley & Sons, Incorporated,c2018  |z 9781119370260 
830 0 |a Advanced Material Series 
999 1 0 |i effc42a8-2726-4e4c-8253-4c1d35c31174  |l 9977919781103681  |s US-PU  |m nanomaterialsbiomedical_environmental_and_engineering_applications_________2018____1__johnwa________________________________________kanchi__suvardhan__________________e