Nanomaterials : Biomedical, Environmental, and Engineering Applications

Bibliographic Details
Main Author: Kanchi, Suvardhan
Other Authors: Ahmed, Shakeel, Hussain, Chaudhery Mustansar, Sabela, Myalowenkosi I
Format: Book
Language:English
Published: Newark : John Wiley & Sons, Incorporated, 2018
Edition:1st ed
Series:Advanced Material Series
Subjects:
Table of Contents:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Part I: Synthesis and Characterization
  • 1 Synthesis, Characterization and General Properties of Carbon Nanotubes
  • 1.1 Introduction
  • 1.2 The History of Carbon Nanotubes
  • 1.3 Graphene
  • 1.4 Graphite
  • 1.5 Fullerene
  • 1.6 Rehybridization
  • 1.7 Structure of Carbon Nanotubes (CNTs)
  • 1.8 Classification of CNTs
  • 1.8.1 Classification by Chirality
  • 1.8.2 Classification by Conductivity
  • 1.8.3 Classification by Layers
  • 1.9 Crystal Structures of Carbon Nanotubes
  • 1.10 Synthesis Methods
  • 1.10.1 Arc-Discharge
  • 1.10.2 Laser Ablation
  • 1.10.3 Flame Methods
  • 1.10.4 Chemical Vapor Deposition
  • 1.11 The Purification Process of CNTs
  • 1.12 Mechanism of Growth CNTs
  • 1.12.1 The Model for Carbon Filament Growth
  • 1.12.1.1 Tip Growth Model
  • 1.12.1.2 Base Growth Model
  • 1.12.2 Free Radical Condensate
  • 1.12.3 Yarmulke Mechanism
  • 1.13 Properties of Carbon Nanotubes
  • 1.13.1 Electronic Properties of Carbon Nanotubes
  • 1.13.2 Mechanical Properties of CNTs
  • 1.14 Applications of Carbon Nanotubes
  • 1.14.1 Fuel Cells
  • 1.14.2 Solar Cells
  • 1.14.3 Dye-sensitized Solar Cells
  • 1.15 Characterization of CNTs
  • 1.15.1 Raman Spectroscopy
  • 1.15.1.1 G band
  • 1.15.1.2 D Band
  • 1.15.1.3 Radial Breathing Mode
  • 1.15.2 X-Ray Diffraction
  • 1.15.3 X-ray Photoelectron Spectroscopy
  • 1.15.4 Thermo Gravimetric Analysis
  • 1.15.5 Transmission Electron Microscopy
  • 1.15.6 Scanning Electronic Microscopy
  • 1.15.7 Scanning Helium Ion Microscopy
  • 1.16 Composite of CNTs/Semiconductors
  • 1.17 Recent Updates on Synthesis of CNTs
  • References
  • 2 Synthesis and Characterization of Phosphorene: A Novel 2D Material
  • 2.1 Introduction
  • 2.1.1 History of Phosphorene
  • 2.1.2 Crystal Structure
  • 2.1.3 Band Structure
  • 2.2 Synthesis of Phosphorene
  • 2.2.1 Mechanical Exfoliation
  • 11.3 Optical Properties
  • 11.4 Improving Performance
  • 11.4.1 Use of a New Kind of Structures
  • 11.4.2 Use of New Spectroscopy Techniques
  • 11.5 Surface Patterning
  • 11.6 Applications - Next-Generation DNA Sequencing and Beyond
  • 11.7 Some Other Sensing Examples
  • 11.8 Future Perspectives
  • References
  • 12 Catalytically Active Enzyme Mimetic Nanomaterials and Their Role in Biosensing
  • 12.1 Introduction
  • 12.2 Different Types of Catalytically Active Enzyme Mimetic Nanomaterials
  • 12.2.1 Carbon Derivative-based Enzyme Mimetic Nanomaterials
  • 12.2.1.1 Carbon Nanotubes
  • 12.2.1.2 Graphene Oxide
  • 12.2.1.3 Graphene Quantum Dots
  • 12.2.1.4 Graphene-Hemin Nanocomposites
  • 12.2.2 Nobel Metal Nanoparticle-Based Enzyme Mimetic Nanomaterials
  • 12.2.2.1 Gold Nanoparticles
  • 12.2.3 Metal Oxide Nanoparticle-Based Enzyme Mimetic Nanomaterials
  • 12.3 Applications of Catalytically Active Nanomaterials in Biosensing
  • 12.3.1 Biosensors
  • 12.3.1.1 H2O2 Detection
  • 12.3.1.2 Glucose Detection Peroxidase-Like Nanozymes Coupled
  • 12.3.1.3 Immunoassays
  • References
  • Index
  • EULA
  • 2.2.2 Plasma-Assisted Method
  • 2.2.3 Liquid-Phase Exfoliation
  • 2.2.4 Chemical Vapor Deposition
  • 2.3 Characterization of Phosphorene
  • 2.3.1 Structural Charcterizations
  • 2.3.2 Spectroscopic Characterizations
  • 2.3.3 Optical Band Gap Characterization
  • 2.4 Environment Stability Issue of Phosphorene
  • 2.5 Summary and Future Prospective
  • References
  • 3 Graphene for Advanced Organic Photovoltaics
  • 3.1 Introduction
  • 3.2 History of Graphene
  • 3.3 Structure of Graphene
  • 3.4 Graphene Family Nanomaterials
  • 3.5 Properties of Graphene
  • 3.5.1 Physicochemical Properties
  • 3.5.2 Thermal and Electrical Properties
  • 3.5.3 Optical Properties
  • 3.5.4 Mechanical Properties
  • 3.5.5 Biological Properties
  • 3.6 Graphene for Advanced Organic Photovoltaics
  • 3.6.1 Transparent Electrodes of OPVs
  • 3.6.2 Acceptor Material in OPVs
  • 3.6.3 Interfacial Layer in OPVs
  • 3.7 Conclusion
  • References
  • 4 Synthesis of Carbon Nanotubes by Chemical Vapor Deposition
  • 4.1 Introduction
  • 4.2 Synthesis Methods
  • 4.2.1 Arc-Discharge
  • 4.2.2 Laser Ablation
  • 4.2.3 Flame Methods
  • 4.2.4 Chemical Vapor Deposition
  • 4.3 The Parameters of CVD
  • 4.3.1 CNT Precursors
  • 4.3.2 Type of Catalyst
  • 4.3.3 Effect of Temperature
  • 4.3.4 Gas Flow Rates
  • 4.4 Deformations and Defects in Carbon Nanotubes
  • 4.4.1 Deformations in Carbon Nanotubes
  • 4.4.2 Defects in Carbon Nanotubes
  • 4.5 Characterization of CNTs
  • 4.6 Conclusion
  • References
  • Part II: Environmental and Engineering Applications
  • 5 A Review of Pharmaceutical Wastewater Treatment with Nanostructured Titanium Dioxide
  • 5.1 Introduction
  • 5.2 Heterogeneous Photocatalysis
  • 5.3 Pharmaceuticals in the Environment
  • 5.4 Role of TiO2 in Photocatalysis for Degradation, Mineralization, and Transformation Process of Pharmaceuticals
  • 5.5 Applications
  • 5.6 Conclusion
  • Acknowledgment
  • 9.2.1 Biophotolysis
  • 9.2.2 Photo-Fermentation
  • 9.2.3 Dark Fermentation
  • 9.2.4 Microbial Electrolysis Cell
  • 9.3 Nanaparticle Effects on Biohydrogen Production
  • 9.3.1 Dark Fermentative Hydrogen Production
  • 9.3.2 Photo Fermentative Hydrogen Production
  • 9.3.3 Photocatalytic Hydrogen (H2) Production
  • 9.3.4 MEC-Based Hydrogen Production
  • 9.4 Biohydrogen Producing Associated with Immobilized Enzymes (Cellulases and Hydrogenases)
  • 9.5 Outlook and Concluding Notes
  • Acknowledgment
  • References
  • 10 A Framework for Using Nanotechnology in Military Gear
  • 10.1 Introduction
  • 10.2 Literature Review
  • 10.2.1 Antibacterial and Self-cleaning Properties
  • 10.2.2 Ballistic Protection Properties
  • 10.2.3 Biological and Chemical Protection Properties
  • 10.2.4 Health Monitoring Sensing Properties
  • 10.2.5 UV Protection Properties
  • 10.2.6 Ethics, Safety, and the Enhancement of Soldier's Performance
  • 10.2.7 Risks in Engineered Nanomaterials
  • 10.2.8 Control of Risks
  • 10.3 Application of Nanotechnology in the Military
  • 10.3.1 Protective Properties
  • 10.3.1.1 Environmental Hazard Protection
  • 10.3.1.2 Biological and Chemical Hazard Protection
  • 10.3.1.3 Injury Protection
  • 10.3.2 Medical Properties
  • 10.3.2.1 Bio-sensing
  • 10.3.2.2 Tissue Repair
  • 10.3.3 Ethics, Safety, and the Enhancement of Soldier's Performance
  • 10.3.4 Key Transmissions of ENM Exposure
  • 10.4 Conclusions
  • 10.4.1 Recommendations
  • References
  • Part III: Biological Applications
  • 11 Plasmonic Nanopores: A New Approach Toward Single Molecule Detection
  • 11.1 Introduction
  • 11.1.1 Biological Nanopores
  • 11.1.2 Solid State Nanopores
  • 11.1.3 Plasmoinc Nanopore
  • 11.2 Sensing Principles of Plasmonic Nanopore
  • 11.2.1 Fabrication of Plasmonic Nanopores
  • 11.2.1.1 Materials of Choice
  • 11.2.1.2 Lithography
  • 11.2.1.3 Multilayers
  • References
  • 6 Nanosilica Particles in Food: A Case of Synthetic Amorphous Silica
  • 6.1 Introduction
  • 6.1.1 The Different Forms of Silica
  • 6.1.2 Synthetic Amorphous Silica
  • 6.1.3 Physical and Chemical Properties of SAS
  • 6.1.4 Silica Applications in the Food Industry
  • 6.1.5 Toxicity
  • 6.1.6 Conclusion
  • References
  • 7 Bio-Sensing Performance of Magnetite Nanocomposite for Biomedical Applications
  • 7.1 Introduction
  • 7.1.1 Hematite
  • 7.1.2 Maghemite
  • 7.1.3 Magnetite
  • 7.1.4 Magnetism and Magnetic Materials
  • 7.1.5 Types of Magnetic Substances
  • 7.1.5.1 Paramagnetic Substances
  • 7.1.5.2 Diamagnetic Substances
  • 7.1.5.3 Ferri Magnetic Substances
  • 7.1.5.4 Ferro Magnetic Substances
  • 7.1.5.5 Anti-Ferro Magnetic Substances
  • 7.1.6 Shape, Size, and Magnetic Properties
  • 7.1.7 Synthesis Methods of Magnetic Nanoparticles
  • 7.1.8 Advantages of Magnetic Nanomaterials
  • 7.1.9 Surface Modifications of Magnetic Nanoparticles
  • 7.2 Potential Applications of Magnetic Nanoparticles
  • 7.2.1 Magnetic Separation
  • 7.2.2 Magnetic Resonance Image
  • 7.2.3 Targeted Drug Delivery Systems
  • 7.2.4 Magnetic Hyperthermia
  • 7.2.5 Gene Delivery
  • 7.3 Conclusion
  • References
  • 8 The Importance of Screening Information Data Set in Nanotechnology
  • 8.1 Introduction
  • 8.2 Review of the Literature
  • 8.2.1 Carbon Nanotubes
  • 8.2.2 Nanosilver
  • 8.2.3 Carbon Nanotubes vs. Asbestos
  • 8.2.4 Density
  • 8.2.5 Risk Assessment
  • 8.2.6 Using SIDS as a Risk Assessment Tool for ENPs
  • 8.3 Behavioral Patterns of Engineered Nanoparticles
  • 8.3.1 Products Containing Nanosilver
  • 8.3.2 Toxicity Effects of Nanosilver on Humans
  • 8.3.3 Toxicity Effects on the Environment
  • 8.4 Conclusions and Recommendations
  • References
  • 9 Nanomaterials for Biohydrogen Production
  • 9.1 Introduction
  • 9.2 Major Biohydrogen Production Pathways