High temperature deformation and fracture of materials /

Bibliographic Details
Main Author: Zhang, Junshan, 1944-
Format: Book
Language:English
Published: Cambridge, UK ; Philadelphia, PA : Beijing : Woodhead Publishing ; Science Press, 2010
Series:Woodhead Publishing in materials
Subjects:
LEADER 08731nam a2200529Ia 4500
001 f481c86a-4805-4059-b647-7169cab9644a
005 20240818000000.0
008 100923s2010 enka b 001 0 eng d
020 |a 0857090798 
020 |a 9780857090799 
035 |a (MCM)001994934MIT01 
035 |a (NcD)005089952DUK01 
035 |a (OCoLC)666239744 
035 |a 666239744 
035 |a NHCCYBP  |b 99944534685 
040 |a BTCTA  |b eng  |c BTCTA  |d CDX  |d YDXCP  |d STF  |d EYM  |d NUI  |d TXA  |d INU 
049 |a MYGS 
050 4 |a TA417.6  |b .Z5 2010 
050 4 |a TA417.7.H55  |b Z53 2010 
082 0 4 |a 620.1121  |2 22 
099 |a TA417.7.H55 Z53 2010 
100 1 |a Zhang, Junshan,  |d 1944- 
245 1 0 |a High temperature deformation and fracture of materials /  |c Jun-Shan Zhang 
260 |a Cambridge, UK ;  |a Philadelphia, PA :  |b Woodhead Publishing ;  |a Beijing :  |b Science Press,  |c 2010 
300 |a xv, 365 p. :  |b ill. ;  |c 24 cm 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
490 1 |a Woodhead Publishing in materials 
504 |a Includes bibliographical references and index 
505 0 0 |g 12.1  |t Uniaxial Creep Models --  |g 12.2.  |t Mutiaxial Creep Models --  |g 12.3.  |t Mutiaxial Steady State Creep Model --  |g 12.4.  |t Stress Relaxation by Creep --  |t References --  |g pt. II  |t High Temperature Fracture --  |g 13.  |t Nucleation of Creep Cavity --  |g 13.1.  |t Introduction --  |g 13.2.  |t Nucleation Sites of Cavity --  |g 13.3.  |t Theory of Cavity Nucleation --  |g 13.4.  |t Cavity Nucleation Rate --  |t References --  |g 14.  |t Creep Embrittlement by Segregation of Impurities --  |g 14.1.  |t Nickel and Nickel-Base Superalloys --  |g 14.2.  |t Low-Alloy Steels --  |t References --  |g 15.  |t Diffusional Growth of Creep Cavities --  |g 15.1.  |t Chemical Potential of Vacancies --  |g 15.2.  |t Hull-Rimmer Model for Cavity Growth --  |g 15.3.  |t Speight-Harris Model for Cavity Growth --  |g 15.4.  |t The role of Surface Diffusion --  |t References --  |g 16.  |t Cavity Growth by Coupled Diffusion and Creep --  |g 16.1.  |t Monkman -- Grant Relation --  |g 16.2.  |t Beer -- Speight Model --  |g 16.3.  |t Edward -- Ashby Model --  |g 16.4.  |t Chen -- Argon model --  |g 16.5.  |t Cocks -- Ashby Model --  |t References --  |g 17.  |t Constrained Growth of Creep Cavities --  |g 17.1.  |t Introduction --  |g 17.2.  |t Rice Model 
505 0 0 |g 17.3  |t Raj -- Ghosh Model --  |g 17.4.  |t Cocks -- Ashby Model --  |t References --  |g 18.  |t Nucleation and Growth of Wedge-Type Microcracks --  |g 18.1.  |t Introduction --  |g 18.2.  |t Nucleation of Wedge-Type Cracks --  |g 18.3.  |t The Propagation of Wedge-Type Cracks --  |g 18.4.  |t Crack Growth by Cavitation --  |t References --  |g 19.  |t Creep Crack Growth --  |g 19.1.  |t Crack-Tip Stress Fields in Elastoplastic Body --  |g 19.2.  |t Stress Field at Steady-State-Creep Crack Tip --  |g 19.3.  |t The Crack Tip Stress Fields in Transition Period --  |g 19.4.  |t Vitek Model for Creep Crack Tip Fields --  |g 19.5.  |t The Influence of Creep Threshold Stress --  |g 19.6.  |t The Experimental Results for Creep Crack Growth --  |t References --  |g 20.  |t Creep Damage Mechanics --  |g 20.1.  |t Introduction to the Damage Mechanics --  |g 20.2.  |t Damage Variable and Effective Stress --  |g 20.3.  |t Kachanov Creep Damage Theory --  |g 20.4.  |t Rabotnov Creep Damage Theory --  |g 20.5.  |t Three -- Dimensional Creep Damage Theory --  |t References --  |g 21.  |t Creep Damage Physics --  |g 21.1.  |t Introduction --  |g 21.2.  |t Loss of External Section --  |g 21.3.  |t Loss of Internal Section --  |g 21.4.  |t Degradation of Microstructure 
505 0 0 |g 21.5  |t Damage by Oxidation --  |t References --  |g 22.  |t Prediction of Creep Rupture Life --  |g 22.1.  |t Extrapolation Methods of Creep Rupture Life --  |g 22.2.  |t θ Projection Method --  |g 22.3.  |t Maruyama Parameter --  |g 22.4.  |t Reliability of Prediction for Creep Rupture Property --  |t References --  |g 23.  |t Creep-Fatigue Interaction --  |g 23.1.  |t Creep Fatigue Waveforms --  |g 23.2.  |t Creep-Fatigue Failure Maps --  |g 23.3.  |t Holding Time Effects on Creep-Fatigue Lifetime --  |g 23.4.  |t Fracture Mechanics of Creep Fatigue Crack Growth --  |t References --  |g 24.  |t Prediction of Creep-Fatigue Life --  |g 24.1.  |t Linear Damage Accumulation Rule --  |g 24.2.  |t Strain Range Partitioning --  |g 24.3.  |t Damage Mechanics Method --  |g 24.4.  |t Damage Function Method --  |g 24.5.  |t Empirical Methods --  |t References --  |g 25.  |t Environmental Damage at High Temperature --  |g 25.1.  |t Oxidation --  |g 25.2.  |t Hot Corrosion --  |g 25.3.  |t Carburization --  |t References. 
505 0 0 |g 4.4  |t Models Based on Dislocation Network --  |g 4.5.  |t Creep Model Based on the Motion of Jogged Screw Dislocation --  |g 4.6.  |t Summary of Recovery Creep Models --  |g 4.7.  |t Soft and Hard Region Composite Model --  |g 4.8.  |t Harper-Dorn Creep --  |t References --  |g 5.  |t Creep of Solid Solution Alloys --  |g 5.1.  |t Interaction Between Dislocation and Solute Atom --  |g 5.2.  |t Creep Behavior of Solid Solution Alloys --  |g 5.3.  |t Viscous Glide Velocity of Dislocations --  |g 5.4.  |t Creep Controlled by Viscous Glide of Dislocations --  |t References --  |g 6.  |t Creep of Second Phase Particles Strengthened Materials --  |g 6.1.  |t Introduction --  |g 6.2.  |t Arzt-Ashby Model --  |g 6.3.  |t Creep Model Based on Attractive Particle-Dislocation Interaction --  |g 6.4.  |t Interaction of Dislocation with Localized Particles --  |g 6.5.  |t Mechanisms of Particle Strengthening --  |g 6.6.  |t Grain Boundary Precipitation Strengthening --  |t References --  |g 7.  |t Creep of Particulates Reinforced Composite Material --  |g 7.1.  |t Creep Behavior of Particulates Reinforced Aluminium Matrix Composites --  |g 7.2.  |t Determination of Threshold Stress --  |g 7.3.  |t Creep Mechanisms and Role of Reinforcement Phase --  |t References 
505 0 0 |g 8  |t High Temperature Deformation of Intermetallic Compounds --  |g 8.1.  |t Crystal Structures, Dislocations and Planar Defects --  |g 8.2.  |t Dislocation Core Structure --  |g 8.3.  |t Slip Systems and Flow Stresses of Intermetallic Compounds --  |g 8.4.  |t Creep of Intermetallic Compounds --  |g 8.5.  |t Creep of Compound-Based ODS Alloys --  |t References --  |g 9.  |t Diffusional Creep --  |g 9.1.  |t Theory on Diffusional Creep --  |g 9.2.  |t Accommodation of Diffusional Creep: Grain Boundary Sliding --  |g 9.3.  |t Diffusional Creep Controlled by Boundary Reaction --  |g 9.4.  |t Experimental Evidences of Diffusional Creep --  |t References --  |g 10.  |t Superplasticity --  |g 10.1.  |t Stability of Deformation --  |g 10.2.  |t General Characteristics of Superplasticity --  |g 10.3.  |t Microstructure Characteristics of Superplasticity --  |g 10.4.  |t Grain Boundary Behaviors in Superplastic Deformation --  |g 10.5.  |t Mechanism of Superplastic Deformation --  |g 10.6.  |t The maximum Strain Rate for Superplasticity --  |t References --  |g 11.  |t Mechanisms of Grain Boundary Sliding --  |g 11.1.  |t Introduction --  |g 11.2.  |t Intrinsic Grain Boundary Sliding --  |g 11.3.  |t Extrinsic Grain Boundary Sliding --  |t References --  |g 12.  |t Multiaxial Creep Models 
505 0 0 |g Machine generated contents note:  |g pt. I  |t High Temperature Deformation --  |g 1  |t Creep Behavior of Materials --  |g 1.1.  |t Creep Curve --  |g 1.2.  |t Stress and Temperature Dependence of Creep Rate --  |g 1.3.  |t Stacking Fault Energy Effect --  |g 1.4.  |t Grain Size Effect --  |t References --  |g 2.  |t Evolution of Dislocation Substructures During Creep --  |g 2.1.  |t Parameters of Dislocation Substructures and Their Measurements --  |g 2.2.  |t Evolution of Dislocation Substructure during Creep --  |g 2.3.  |t Dislocation Substructure of Steady State Creep --  |g 2.4.  |t Inhomogeneous Dislocation Substructure and Long-Range Internal Stress --  |t References --  |g 3.  |t Dislocation Motion at Elevated Temperatures --  |g 3.1.  |t Thermally Activated Glide of Dislocation --  |g 3.2.  |t Measurement of Internal Stress --  |g 3.3.  |t Climb of Dislocations --  |g 3.4.  |t Basic Equations of Recovery Creep --  |g 3.5.  |t Mechanisms of Recovery --  |t References --  |g 4.  |t Recovery-Creep Theories of Pure Metals --  |g 4.1.  |t Introduction --  |g 4.2.  |t Weertman Model --  |g 4.3.  |t Models Considering Sub-Boundary 
650 0 |a Deformations (Mechanics) 
650 0 |a Fracture mechanics 
650 0 |a Materials at high temperatures 
650 7 |a Deformations (Mechanics)  |2 fast 
650 7 |a Fracture mechanics  |2 fast 
650 7 |a Materials at high temperatures  |2 fast 
830 0 |a Woodhead Publishing in materials 
999 1 0 |i f481c86a-4805-4059-b647-7169cab9644a  |l 990019949340106761  |s US-MCM  |m high_temperature_deformation_and_fracture_of_materials_____________________2010_______woodha________________________________________zhang__junshan_____________________p 
999 1 0 |i f481c86a-4805-4059-b647-7169cab9644a  |l 990050899520108501  |s US-NCD  |m high_temperature_deformation_and_fracture_of_materials_____________________2010_______woodha________________________________________zhang__junshan_____________________p 
999 1 1 |l 990019949340106761  |s ISIL:US-MCM  |t BKS  |a SCI STACK  |b 39080035825618  |c TA417.7.H55 Z53 2010  |d 0  |x BOOK  |y 23485540100006761  |p LOANABLE 
999 1 1 |l 990050899520108501  |s ISIL:US-NCD  |t BKS  |a PERKN PK  |b D04432126M  |c TA417.7.H55 Z53 2010  |d 0  |x BOOK  |y 23706091120008501  |p LOANABLE